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Abstract Cold stress has been shown to induce the
production of reactive oxygen species (ROS), which can
elicit a potentially damaging oxidative burden on cellular
metabolism. Here, the expression of a metallothionein
gene (AtMT2a) was upregulated under low temperature
and hydrogen peroxide (H2O2) stresses. The Arabidopsis
T-DNA insertion mutant, mt2a, exhibited more sensitivity
to cold stress compared to WT plants during the seed
germination, and H2O2 levels in mt2a mutant were higher
than that in WT plants during the cold stress. Synthetic
GFP fused to AtMT2a was observed to be localized in
cytosol. These results indicated that AtMT2a functions in
tolerance against cold stress by mediating the ROS
balance in the cytosol. Interestingly, mRNA level of
AtMT2a was increased in seedlings of Arabidopsis cat2
mutant after cold treatment compared to WT seedlings,
and overexpression of AtMT2a in cat2 could improve CAT
activity under chilling stress. Moreover, the enzymatic
activity of CAT in mt2a was higher than that in WT plants
after cold treatment, suggesting that AtMT2a and CAT
might complement each other in antioxidative process
potentially in Arabidopsis. Taken together, our results
provided a novel insight into the relationship between
MTs and antioxidative enzymes in the ROS-scavenging
system in plants.
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Introduction

During growth and development, plant has to cope with a
range of different external stresses, such as low temperature,
drought, and high salinity. To survive environmental changes,
plants have developed elaborate mechanisms to perceive
external signals and to manifest adaptive responses with the
proper physiological and morphological changes (Mahajan
and Tuteja 2005; Huang et al. 2009). The production of
reactive oxygen species (ROS) such as hydrogen peroxide
(H2O2), superoxide anion (O2

−), and its more toxic byprod-
ucts, hydroxyl radicals (OH−) and singlet oxygen (1O2),
occurs at all times during plant growth and development, and
increases when plants are exposed to various biotic and
abiotic stresses (Xiong et al. 2002). Previous studies
indicated that ROS are highly reactive and toxic and can
lead to the oxidative destruction of cells (Asada 1988). In
recent years, it has been identified that ROS play a novel role
in the regulation of many biological processes, such as
growth, cell cycle, programmed cell death, hormone signal,
biotic and abiotic stress response, and development (Mittler
et al. 2004; Kotchoni and Gachomo 2006). These studies
provided evidences that ROS has a dual role in plant biology
as both toxic byproducts of aerobic metabolism and key
regulators of growth, development, and defense pathways.

It has been accepted that antioxidant defense systems,
including non-enzymatic antioxidants such as ascorbate,
reduced glutathione, and tocopherol, and enzymatic anti-
oxidants such as superoxide dismutase (SOD) and catalase
(CAT), play a crucial role in plants against various stresses
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(Mittler et al. 2004). The regulation of the concentrations of
antioxidants and of the activities of antioxidant enzymes is
an important mechanism for combating oxidative stress
(Kovtun et al. 2000). It has been reported that superoxide
radicals (O2

−) are scavenged through the catalytic activity
of SOD, while hydrogen peroxide (H2O2) is scavenged
through the catalytic action of ascorbate peroxidase (APX
and CAT; Mittler et al. 1999). Most of these enzymes play
their function by binding metal ions as metal co-factors in
plant, such as protoporphyrin-bound iron which is essential
for native catalase to degrade hydrogen peroxide into water
and oxygen (Vetrano et al. 2005).

Metallothioneins (MTs) constitute a superfamily of evolu-
tionally conserved, low molecular mass, cysteine-rich proteins
that can bind metals via the thiol groups of their cysteine (Cys)
residues (Cobbett and Goldsbrough 2002; Zhigang et al. 2006;
Zhou et al. 2006; Thirumoorthy et al. 2007). In animals, MTs
are not only involved in maintaining homeostasis of essential
metals and metal detoxification (Thirumoorthy et al. 2007)
but also implicated in a range of other physiological
processes, including scavenging ROS, regulating cell growth,
and proliferation (Davis and Cousins 2000). Recently, plant
MTs have been proposed to be primarily involved in the
response to metal toxicity and oxidative stress (Mir et al.
2004; Vetrano et al. 2005; Guo et al. 2008). It has been
proposed that plant MTs might function as efficient scav-
engers of ROS production when plants were exposed to
abiotic stress (Chatthai et al. 1997; Nishiuchi et al. 2007;
Yuan et al. 2008). Additionally, plant MTs are also involved
in some important developmental processes, such as fruit
ripeness, root development, and suberization (Chatthai et al.
1997; Clendennen and May 1997; Mir et al. 2004; Moyle et
al. 2005). Although increasing numbers of reports have
indicated that plant MTs may play important roles as they
do in animals, knowledge on the molecular functional
mechanisms of plant MTs is limited, and the relationships
between MTs and antioxidant enzymes in plant response to
oxidative stress have remained largely unexplored.

In this paper, we showed that the expression of AtMT2a
was induced effectively under H2O2 and low temperature
stresses, and AtMT2a functions as an ROS scavenger in the
cytosol under abiotic stress conditions. AtMT2a and CAT
might be complementary to each other in antioxidative
process. Our results provided interesting information to
investigate the ROS-scavenging mechanism of MTs in plants.

Materials and Methods

Plant Materials and Stress Treatments

Plants (Arabidopsis thaliana ecotype Columbia) were
grown on germination medium agar plates for 2 weeks, as

described previously (Yamaguchi-Shinozaki and Shinozaki
1994). For different stress treatments, uniformly developed
14-day-old seedlings were transferred into liquid medium
containing 150 mM NaCl for 6 h, 20 g/100 mL PEG for
2 h, and 10 mM H2O2 for 6 h. For the low temperature
treatment, the seedlings were transferred to an incubator at
4°C for 24 h.

Identification of Insertion Mutation

The T-DNA insertion line, mt2a (SALK_059712), was
ordered from the Arabidopsis Biological Resource Center
(ABRC; http://www.arabidopsis.org/abrc/). The homozygous
alleles were determined by PCR amplification with the
promoter-specific primers (2ap5: ctgcagcggttcttgctcg and
2ap3: ggatccctcgagaaaattcaaa) and T-DNA specific primers
homologous to the left border (LBb1: gcgtggaccgcttgctg
caact; Zsigmond et al. 2008). Another homozygous alleles of
cat2 (SALK_057998) which was also ordered from the
ABRC were confirmed using gene-specific primers (cat25:
gtccagctagttcttacaactc and cat23: tgcttggtctcacgttcagac) as
described above in this section.

Freezing Tolerance

Arabidopsis seeds were surface-sterilized and water-
imbibed in the dark for 1 day at 20°C and then were
treated with −6°C for 12 h. Seeds were transferred to 0.5
Murashige and Skoog medium (pH 5.7) and germinated
with a photoperiod of 16 h of light and 8 h of dark for
2 days. Germination kinetics was determined by measuring
the proportion of seeds at different time points in a sample
where the radicle had begun to emerge from repeated
experiments with duplicate plates of approximately 25
seeds each.

Conductivity Test

Arabidopsis seeds were surface-sterilized and water-
imbibed in the dark for 1 day at 20°C and then were
treated with −6°C for 12 h. The conductivity of the seed
leachate was determined using the YSI 3200 (Yellow
Springs, OH, USA) conductivity meter after swirling the
contents for 10 to 15 s. Conductivity was calculated as
conductivity for each liter mass of seeds=μS cm−1g−1.

Northern Bolt Analysis

Total RNA of the whole seedlings was isolated using the
RNeasy Plant Mini Kit (Qiagen Fremont, CA, USA). The
3′UTR of AtMT2a was used as probe which was amplified
by the two primers P5: gcacctgcaagtgaagaagcct and P3:
ccactggaagtacaaactcatcac. The specific AtMT2a fragment
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was labeled with [α-32P]dCTP using the hybridization
procedure described by Yamaguchi-Shinozaki and Shinozaki
(1994). The blots were exposed to the phosphorimager.

H2O2 Staining with DAB

H2O2 accumulation in plant was visualized by DAB
staining. Fourteen-day-old Arabidopsis seedlings were
vacuum-incubated for 2 min with DAB solution
(1 mg mL−1, pH5.8) and incubated in the dark at 22°C
20 h. The stain was poured off and chlorophyll removed by
incubating overnight in 96% (v/v) ethanol. DAB is
polymerized locally in the presence of H2O2 giving a
visible brown stain.

Subcellular Localization of the MT2a Protein

The AtMT2a cDNAwith the termination codon removed was
fused in frame to the GFP reporter gene in the pBINmGFP5-
ER vector and verified by DNA sequencing. The fusion
construct for AtMT2a-GFP and the GFP control plasmid
were introduced into Arabidopsis as described previously
(Sakuma et al. 2006). The GFP fluorescence in the young
roots of 14-day-old transgenic plants was analyzed with the
fluorescence microscope (Olympus BX50). All photographs
were taken at the same magnification.

Measure of H2O2 Production

Fourteen-day-old Arabidopsis seedlings (about 0.1 g FW)
were homogenized in 1 mL cold acetone in a mortar with
silica sand (Xue et al. 2009). The extract and washings
were centrifuged at 1,250 g for 10 min, and the chlorophyll
contents were absorbed by activated carbon. Then, 200 μl
supernatant were added to 1 mL of reaction buffer
[0.25 mM FeSO4, 0.25 mM (NH4)2SO4, 25 mM H2SO4,
1.25 mM xylenol orange, and 1 mM sorbitol] at room
temperature for 1 h. H2O2 level were quantified at 560 nm
absorbance, and H2O2 level were calculated by reference to
standards.

CAT Extraction and Assays

Soluble proteins of 14-day-old Arabidopsis seedlings
(about 0.1 g FW) were extracted by homogenizing the
powder in 1 mL of potassium phosphate buffer (0.1 M,
pH 7.8) containing 1 mM EDTA, 0.3% (v/v) Triton X-100,
and 1 g/100 mL polyvinylpolypyrrolidone. The homoge-
nate was centrifuged at 15,000 g for 20 min at 4°C, and the
supernatant was used for the following enzyme assays.
Protein content was determined according to the method of
Bradford with bovine serum albumin (0.563 mg mL−1) as
standard (Bradford 1976). Catalase activity was determined

by spectrophotometrically following H2O2 decomposed
min−1mg−1 protein and corresponds to the mean±SD of
the values obtained with three measurements per extract
(Jiang and Zhang 2002).

Statistical Analysis

Data were analyzed for significant differences using the
statistical software SASS for windows. Differences at the
5% level were considered significant. These data presented
are the means from three replications.

Results

AtMT2a Involved in the Mediation of H2O2 Level
during Abiotic Stresses

To analyze the function of AtMT2a (At3g09390) in
Arabidopsis, a T-DNA insertion line which was designed
as mt2a (SALK_059712) was obtained in the A. thaliana
Col-0 background. By screening the Genbank and Arabi-
dopsis Biological Resource Center (http://www.arabidopsis.
org/abrc/), we found that the T-DNA insertion is in the
promoter region of AtMT2a (Fig. 1a). The homozygote
lines of mt2a were identified using three primers by PCR
analysis (data not shown).

To get clue of the role of AtMT2a in abiotic stress, we
detected its transcription level in WT plants treated with
various abiotic stresses including cold, drought, salinity,
and H2O2. The northern blot analysis indicated that the
expression of AtMT2a could be induced by the four kinds
of stresses, especially by low temperature and oxidative
stresses (Fig. 1b). Moreover, the cold and other stresses
resulted in more accumulation of intercellular H2O2 in WT
Arabidopsis seedlings (Fig. 1c, d). In mt2a mutant, no
AtMT2a transcripts were detected under normal and all
stress conditions (Fig. 1b), whereas H2O2 accumulation was
significantly increased by measuring H2O2 contents and
histochemical 3,3-diaminobenzidine (DAB) staining in cold
stress (Fig. 1c–e). These results revealed that a linear
relation between the expression of AtMT2a and the H2O2

level is possible in Arabidopsis plants.

mt2a Displays Sensitivity to Cold Stress during Seed
Germination

To elucidate the in vivo functions of the AtMT2a gene
during cold stress in plants, we performed the seed
germination of mt2a mutant and WT exposed to cold
stresses. As shown in Fig. 2a to c, the seeds of mt2a
germinated later than WT by analyzing germination ratio
and root length, though the germination rates of the seeds
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of mt2a and WT seedlings were similar following 40 h of
germination in 0.5 MS medium after freezing treatment,
and membrane permeability of mt2a seeds was obviously
higher than that in WT seeds after cold stress treatment by
conductivity test (Fig. 2d). These above results strongly
supported the idea that AtMT2a functions in the resistance
against cold stress in Arabidopsis.

To identify the cellular compartment in which AtMT2a
functions, transgenic Arabidopsis plants were produced
carrying transcriptional fusions of MT2a and GFP open
reading frame under the control of 35S promoter. The 35S:
GFP was also overexpressed in transgenic Arabidopsis
plants as a control (Fig. 3b). As shown in Fig. 3d and f,
AtMT2a-GFP was localized to the cytosol of young roots
of transformed Arabidopsis under both normal and cold

stress conditions, suggesting that AtMT2a mainly functions
in mediating the ROS balance in the cytosol.

The Complementary Relationship between AtMT2a
and CAT in ROS Scavenging

It is well-known that CATs, as a kind of enzymatic
antioxidants, play an important role in reducing the
accumulation of hydrogen peroxide (H2O2), thereby pro-
tecting cells against oxidative damage (Mittler et al. 2004;
Kotchoni and Gachomo 2006). To investigate the relation-
ship of AtMT2a and CATs, a mutant homozygote of a
CAT2 gene (At4g35090), cat2 (SALK_057998), was
obtained. Northern blot analysis showed that the mRNA
levels of AtMT2a were obviously increased in cat2 seed-
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lings after cold treatment compared to WT seedlings
(Fig. 4a). Interestingly, overexpression of AtMT2a in cat2
mutant (designed as cat2-MT2a) resulted in an increase of
the CAT activity under cold stress condition, and the
activity of CAT in cat2 was much lower than that in WT
seedlings because of the absence of CAT2 in Arabidopsis,
indicating that higher level of AtMT2a could complement
the lack of CAT2 gene under cold stress condition (Fig. 4b).
On the other hand, the CAT activity in mt2a was
significantly higher than that in WT seedlings after cold
treatment (Fig. 4b). These results suggested that AtMT2a
and CAT might complement each other, which lead to keep
the balance of ROS in Arabidopsis when plants were
exposed to cold stress.

Discussion

Plant growth and productivity are affected by various
abiotic stresses, such as drought, high salinity, and low
temperature (Mahajan and Tuteja 2005; Shan et al. 2007).
Oxidative stress occurs as an essential response when plants
are challenged with these abiotic stresses and results from
the disturbance in balance between ROS production and
scavenging (Mittler 2002). It has been accepted that ROS
play a central role in many signaling pathways in plants
involved in stress perception, photosynthesis regulation,
pathogen response, and programmed cell death (Yuan et al.
2008). However, the excessive accumulation of ROS can
lead to the oxidative destruction of cells (Mittler et al. 2004;

Kotchoni and Gachomo 2006). Consequently, plants have
developed a variety of ROS-scavenging mechanisms by
which they respond to oxidative stress. These mechanisms
include the production of both non-enzymatic antioxidants
such as ascorbate and glutathione and enzymatic antiox-
idants such as SOD and CAT (Gajewska and Sklodowska
2007). In recent studies, the regulation of the concentrations
of antioxidants and the activities of antioxidant enzymes is
an important mechanism for combating oxidative stress
(Alscher et al. 2002; Blokhina et al. 2003; Heiber et al.
2007). However, because of the complexity and diversity of
cell metabolism, other unknown antioxidative mechanisms
may exist in plant cells and need to be clarified.

MTs are a class of low molecular mass (4 to 8 kD),
cysteine-rich proteins that can bind metals via the thiol
groups of their Cys residues. This property endows them
with wide-ranging functional capabilities in biosystems
(Thirumoorthy et al. 2007; Guo et al. 2008). Recently, a
number of investigations have demonstrated MTs as being
efficient scavengers of ROS production in animals (Dong et
al. 2007; Peng et al. 2007). In mammalian cells, MTs may
act in zinc trafficking and/or zinc donation to apoproteins,
including antioxidant enzymes and zinc finger proteins
(Guo et al. 2009). These numerous zinc coordination sites
of proteins provide the opportunity for the cellular MT to
influence oxidative damage caused by oxidative stress and
other key processes (Davis and Cousins 2000; Maret 2004;
Li et al. 2006). Based on our results, we proposed that plant
MTs may also function as an ROS scavenger involved in
the response to oxidative stress (Navabpour et al. 2003;
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Nishiuchi et al. 2007; Yuan et al. 2008). More recently, a
type 2 MT in rice, OsMT2b, was also showed to be
involved in ROS scavenging and signaling (Yuan et al.
2008).

In our studies, the expression of AtMT2a could be
induced by drought, high salinity, cold stress, and H2O2,
especially under condition of oxidative stress and low
temperature (Fig. 1b), and all above abiotic stresses resulted
in increased intercellular H2O2 levels in Arabidopsis seed-
lings, especially cold stress (Fig. 1c, d). On the other hand,
H2O2 content of mt2a was obviously higher than WT plants
during cold stress, and only slightly higher H2O2 was
accumulated in mt2a than WT plants under salinity and
drought treatments (Fig. 1c–e). Moreover, the seeds of mt2a
germinated slower than WT plants under cold condition
(Fig. 2). Taken together, these results indicated that
AtMT2a could scavenge redundant H2O2 effectively during
abiotic stresses, especially under cold condition. By
mediating the ROS balance, AtMT2a could contribute to
low temperature tolerance of Arabidopsis.

CAT is the major H2O2-scavenging enzyme in all
aerobic organisms. Protoporphyrin-bound iron exists in a
high spin ferric state in native CAT, which is essential for
its ability to degrade hydrogen peroxide into water and
oxygen (Vetrano et al. 2005). Compared with WT seed-
lings, higher H2O2 level in mt2a leads to the increased CAT
activity under cold stress condition (Fig. 4b), which is
consistent with previous studies (Jiang and Zhang 2002).
Our results also indicated that AtMT2a gene expression is
obviously induced in cat2 mutant in which the H2O2 level
is higher than that in WT plants during cold stress (Fig. 4a).
Moreover, a considerable recovery of enzymatic activity
from 5.3% to 35.3% was detected when overexpressing
AtMT2a in cat2 mutant under cold stress condition
(Fig. 4b). In general, organelles with a highly oxidizing
metabolic activity or with an intense rate of electron flow,
such as chloroplasts, mitochondria, and microbodies, are a
major source of ROS production in plant cells, and then
ROS could diffuse rapidly from plastids to cytoplasm
(Henzler and Steudle 2000). Previous study demonstrated
that CATs have been mainly found in peroxisomes (Mittler
et al. 2004). However, we revealed that MT2a are located in
cytoplasm under both normal and cold stress conditions
(Fig. 3). In view of these observations, it is suggested that
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MT2a and CAT complement each other in different
compartment of cell in the ROS-scavenging process.

In summary, our results provided a novel insight into the
relationship between MTs and antioxidative enzymes in
plants in the ROS-scavenging system. MTs might play a
role in the tolerance against cold stress by inhibiting ROS
accumulation in plant. The complementary relationship
between MTs and CAT in different compartment of cell
under low temperature stress was observed for the first
time. Our results described here establish a foundation for
future studies of the ROS-scavenging mechanism in plants.
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